

under changing environmental and socio-economic conditions

S. Giertz¹, B. Diekkrüger¹, B. Reichert², B. Höllermann¹, G. Steup¹, A. Kocher, H. Paeth and M. Diederich³

¹Department of Geography, University of Bonn, Meckenheimer Allee 166, Bonn; ²Steinmann Institute of Geology, University of Bonn, Nussallee 8, Bonn, ³Meteorological Institute, University of Bonn, Auf dem Hügel 20, Bonn

The current situation

Benin is currently not suffering from water scarcity as the actual annual freshwater availability of 4000m³ is far above the critical limit of 1000m³/cap/y. However, the Beninese population is affected from many water related problems:

- Water shortages during the dry season
- Low water yields in the fractured aquifer
 Insufficient water supply and sanitation infrastructure
- Insuncient water supply and s
 Poor drinking water quality
- Institutional problems of water management
- Overuse of groundwater in South Benin resulting in saltwater intrusion

Possible future development

Benin's future socio-economic and environmental changes will have an important impact on the water demand and availability in Benin. Major developments - aggravating the already difficult water situation- will be:

- Increased water demand for agriculture and households due to high population growth
- Impact of climate change on seasonal and total water availability in Benin
- Increased land use change which causes erosion and soil degradation
- Remaining problems with infrastructure and management
 Halving the water availability per person and year due to
- population growth in about 20 years

Modelling the impact of climate changes on water cycle and water availability in the Ouémé catchment

Conclusions • The water balance model shows that the unmet demand will increase in future due to the

- For the assessment of environmental and socio-economic impacts on future water resources an interdisciplinary modelling approach is required.
- Downscaling of global climate scenarios for hydrological modelling was successfully
- carried out by a combination of dynamical and statistical downscaling. Future scenarios revealed a decrease of available water resources in the Ouémé
- Future scenarios revealed a decrease of catchment for surface and groundwater.
- Universität zu Köln

Ministry of Innovation, Science, Research and Technology of the German State of North Rhine-Westphalia

data und future scenarios in an user-friendly way.

decrease of water availability and increase of water demand.

Federal Ministry of Education and Research

 All results of the models will be available for stakeholders in Benin in user-friendly SDSS, which are integrated in the IMPETUS SDSS-framework.

• The SDSS can support the water management process in Benin by providing reliable

